If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15t^2+40t-80=0
a = 15; b = 40; c = -80;
Δ = b2-4ac
Δ = 402-4·15·(-80)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-80}{2*15}=\frac{-120}{30} =-4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+80}{2*15}=\frac{40}{30} =1+1/3 $
| -14+6y+49=180 | | x+5=3x–7 | | 9y+16=13 | | 10(z-96)=30 | | a=14=3a+16 | | 11=40x | | -20+-2w=-74 | | -2p+9=27-4p | | 40=12y-7y | | 7=j-37/5 | | 2=q+2/2 | | 6=3(2z+8) | | 6(h-83)=6 | | -2-7x=-37= | | -3x-7=9+6x | | 4^2x=(0.5)^x+5 | | x^2+76=4x | | -4x+8=24= | | 7x=4=-4X+37 | | n+20/5=9 | | 8=-8u+(u+5) | | X+y-70=0 | | d/4-23=-20 | | -5=z/2-8 | | 0.5r-3=3(4-1.5r | | (3x+2x)+(-x+5)=2x-7 | | -18=2(x-2)-4x | | 8(x-4)+15=8x-17 | | 7(k+4)=98 | | 11.5x-6=-3x+23 | | 2(w-3=-4w | | 8=10u-6u |